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SOLUTIONS OF THE EQUATIONS OF EQUILIBRIUM OF
ELASTIC DIELECTRICS: STRESS FUNCTIONS,
CONCENTRATED FORCE, SURFACE ENERGY*
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Abstract—In this paper, functions analogous to the Papkovitch functions of classical elasticity are derived for
Mindlin’s linear theory of elastic dielectrics whose energy density of deformation and polarization depends on
the gradient of the polarization, as well as on the strain and on the polarization itself. These functions are then
used to solve the problem of the concentrated force. They are also used to solve the problems of the sphere and
of the spherical cavity, in the absence of all external actions, in order to display the influence of surface curvature
on the surface energy of deformation and polarization inherent in the theory.

1. INTRODUCTION

IN A recent paper, Mindlin [1] extended a linear version of Toupin’s [2] form of the classical
equations of an elastic dielectric to include the contribution of the polarization gradient
to the stored energy of deformation and polarization. The main effects of the augmentation
of the equations are the accommodation of a surface energy of deformation and polariza-
tion and the introduction of a new, linear, electro-mechanical effect in both non-centro-
symmetric and centrosymmetric (including isotropic) materials.

The present paper is concerned with Mindlin’s equations of equilibrium for isotropic
dielectrics. A general solution is found in terms of functions analogous to the Papkovitch
functions of classical elasticity and particular solutions are given for the concentrated force
and for the surface energies of deformation and polarization at internal and external
spherical surfaces.

As in Kelvin’s solution in classical elasticity, the singularity of the displacement field
for the concentrated force is of order ™!, as are the singularities of the polarization and
Maxwell electric self-field.

It is also found that the surface energy of deformation and polarization for a plane
surface cannot be a minimum compared to those of curved surfaces; that is, the surface
energies of deformation and polarization of an internal and an external spherical surface
cannot both be greater than that of a plane surface of the same material, although either
one can be either less or greater. Whatever the case, the effect of surface curvature is quite
small in the range of curvatures in which the equations are expected to be valid.
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2. THE EQUATIONS OF AN ELASTIC DIELECTRIC WITH POLARIZATION
GRADIENT

Let the body occupy a region V, whose boundary S separates it from an outer vacuum
V', If the body is in static equilibrium, the field equations developed in [1] reduce to

T+ f; =0, (2.1a)
E;+E;i—¢,;+E} =0, (2.1b)
—&putP ;=0 inV, (2.1¢)
¢ui=0 inV’; (2.1d)
and, on a free boundary S,
nT; =0, (2.2a)
mE; =0, (2.2b)
n{—eolop]+P) =0. (2.2¢)

In the equations quoted so far, f; and E; are the external body force and electric field, ¢ is
the potential of the Maxwell self-field; i.e.

EfS= -9, 2.3

P, is the polarization, [¢ ] is the jump in ¢ ; across S, n; is the unit normal to S, directed
outward from V, and g, is the permittivity of a vacuum.

Constitutive relations for the stress T;;, the effective local electric force E;, and E;;
are derived from the energy density W' of deformation and polarization. For an isotropic
and centrosymmetric material, W' is given by

W = boP,;+3aP.P,+3b 2P P, j+ 3{(bas + b77)PiP;
+3(baa—b77)P;iPrj+3C128uS i+ CaaSiSi
+di 2P iS5+ 2d4a Py Sy, (2.4)

where §;; is the strain, given by

Sij = Hujit+us;), 2.5)
in which u; is the displacement. Then
- oWt
~E; = o ab;, (2.63)
oWt
E;= = b120;Pixt (basa+bq7)P;,
an,i
+(Bas—br7)P;j+d120S 0+ 2daaSii+ bodyjs (2.6b)
owt .
I; = as. d120:iPix+daa(Py i+ P )
ij

+ €120+ 2¢44Si; = T, (2.6¢)
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where §;; and S, i # j, are considered to be independent variables when OW"/as,; are
formed.

For a homogeneous material, substitution of (2.5) into (2.6), and subsequent substitution
of the result into (2.1), give the ““‘displacement” equations of equilibrium. In vector form,
these are [1]

C44V2u + (Cl 2+ C44)VV ‘u+ d44V2P + (d12 + d44)VV -P+f= 0, (273.)

d4472“ +(di2 +dag)VV - u+(bys +b,7)V?P

+(by2+bsa—b7)VV-P—aP —-Veo +E° = 0, (2.7b)
—£5V2p+V-P =0, inV, (2.7¢)
V¢ =0, inV" (2.7d)

Substitution of (2.5) into (2.6), and subsequent substitution of the result into (2.2), give
the boundary conditions for a free surface S in terms of u, P, and ¢. In vector form these are

di;nV-P+dyn-(VP+PV)+conV-u+cyqn- (Va+uV) = 0, (2.8a)

by.nV -P+byn-(VP+PV)+bym- (VP-PV)

+dinV-u+dyn- (Vu+uV)+bon = 0, (2.8b)
n-(—¢g|Ve]+P) = 0. (2.8¢)
The density W of the total self energy is given by
WL+ 18 i?D i, in V,
W= ) 38090, o (2.9)
2809.i9,i> m V.

For a centrosymmetric, isotropic and homogeneous material, the expression, derived
in [1], for the total self energy associated with a body satisfying the equations of equilibrium
(2.1) without external body force or external electric field, and satisfying the boundary
conditions (2.2) for a free boundary, reduces to

f WdV = 1b0f nP,dS < 0, (2.10)
V+v’ 2 S

where the inequality is a consequence of the positive-definiteness of the quadratic part of
the energy density W. From (2.10), the surface energy of deformation and polarization per
unit area, henceforth called the surface energy, is

T = 3bo[n;Pls. (2.11)

This energy is to be added to the bond energy, per unit area, to obtain the total energy per
unit area required to separate the material into two parts along a surface S [3].
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3. STRESS FUNCTIONS

In this section it is proved that any solution {u, P, ¢} of the ““displacement’” equations of
equilibrium (2.7a, b, ¢), in a region V bounded by a surface S, can be expressed as

u=B—1(1—kV@E-B+Bo)+a 'cisks(k,—k;)VV B
— ok Vo +a~ ky(1 +age)(1 — BV — ko (K — BVV - K), (3.1a)

P = —a lcaqlky —k)VV -B+eoVo—a™ (1 +ag)(1 —BVAVe+K—BVV.-K, (3.1b)

provided that B, By, K, and ¢ satisfy, in V, the equations

¢V’ B = —1, (3.2a)
c4aV?By =1 -, (3.2b)
a(1 —BV*K = E° —k,f, (3.2¢)
(1 +ago)(1 —B3VHV3ip = V-E°—k,V -f, (3.2d)

where r is the position vector, and
k = caa/(Cia+2C44), (3.3a)
ky = (dy,+2d43)/(€12+2¢44), (3.3b)
ky = dss/Caa, (3.3c)

and where

B = gol(bya+2baa) (€12 +2¢44)—(d12+2d40)? V(1 +aso)(cia+2¢44) > 0,  (3.4a)
13 = baa+br7)caa—dis)/acss > 0. (3.4b)

The inequalities of (3.4) are necessary conditions for the positive-definiteness of the qua-
dratic part of the energy density W. Each of the parameters [, and /, has the dimension of
length.

A proof of completeness of the representation (3.1) will now be given. First, by means
of the usual proof of the Helmholtz resolution, functions ¢, and H, are constructed from
n, by means of Poisson integrals, so that u has the representation

u =gV, +VxH,, V-H, =0. (3.5)
Next, it 1s noted that (2.7c) may be written as
V- (—eVo+P) = 0.
Now, for any solenoidal vector v there exists a vector w, such that
v=Vxw.
Thus, in the present case, there exists a vector H, such that

“80V§D+P = Vx Hz,
so that P has the representation

P =¢Vo+VxH,. (3.6)
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The equations (3.5) and (3.6) are substituted into (2.7a, b, ¢). Equation (2.7¢) is satisfied
automatically, while (2.7a) and (2.7b) assume, respectively, the forms
eoV2V[(C12+2¢40)@1 +(d12 +2dsa)@) + VPV x [caH +dysH 1+ = 0, (3.7a)
eoV{(d12+2dss)V?@1 +[(b12+2bss)V? —(a+25 o} (3.7b)
+V x {dg4V*H, +[(bss+b;7)V*—a]H,} +E° = 0.

In order to assure completeness of the representation for every set of material constants
compatible with positive-definiteness of the quadratic part of the energy density W, divi-
sion by d,, +2d,4 and by d,, is prohibited, since each of these constants may be equal to
zero within the confines of positive-definiteness. With this in mind, define

¥ =0+kio, (3.8a)
Substitution of (3.8) into (3.7a) gives
caaVik VY +V x G)+f = 0. (3.9
The functions ¥ and G are now resolved into Papkovitch functions by the procedure
of [4].
Define

B =k 5V +VxG. (3.10)

Substitution of (3.10) into (3.9) yields the desired differential equation (3.2a). Also, the
divergence of (3.10) is

V-B =k gV (3.11)
Define
By = 2k Ygqfy —r - B. (3.12)

With the aid of (3.11) and the already established (3.2a), it is found that B, satisfies the
desired differential equation (3.2b).
Equation (3.12) may be used to eliminate i from (3.8a). Thus,

@1 =Y —kip = skeg '(r- B+ Bo)—k; 0. (3.13)
Equations (3.12) and (3.10) may be used to eliminate G from (3.8b). Thus,
VxH; =VxG—k,VxH, = B—3V(r-B+B,)—k,V xH,. (3.14)

Substitution of (3.14) and (3.13) into (3.7b) gives
(1 +aeo)(1 =BV +a(l — BVV x Hy +caqlk, —k )VV -B—E°+ kf = 0, (3.15)

with the aid of the already established (3.2a) and (3.2b).
Now, following a procedure similar to that of [4], define

4K = a_lf rite TRl + ago)(1 — BV2)Vo
Vv

. (3.16)

+a(1 — le )V X H2 +C44(k2 —kl)VV - B]Q dVQ,
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where r, is the distance between a field point P(x, y, z) and a source point Q(¢, 7, ¢); and
dVp = dn d¢d(. Then by a process similar to that for Poisson’s equation [5],

a(l —BVHK' = (1 +aeo)(1 — BV +a(1 — BV x Hy + a4k, —k,)VV-B. (3.17)
Comparison with (3.15) shows immediately that
a(l —BVAK' = E°—k,f. (3.18)
Also, the divergence of (3.17) is
7 a1 =GV -K' = (1 +agg)(1 — BV2)WV2p +cyylky —k,)V2V - B. (3.19)
Now define
K’ = VxH, —K' +5VV-K' +a~ '(1+ae)(1 —BV)V2 @ +a~ ‘cauky—k,)VV-B.  (3.20)
With the aid of (3.17) and (3.19), it is seen that K" satisfies
V-K'=0, (1-BVHK” = 0. (3.21)
The definition (3.20) provides a representation for V x H, ; viz.,
VxH, = K+K' = BVV K —a" (1 +ago)(1 —BV)Vo +a 'cyglky —k;)VV-B. (3.22)
Now define
K=K +K" (3.23)

By virtue of (3.21), the representation (3.22) for V x H, becomes

VxH, = K—BVV-K—a (1 +aeo)(1 — BVWo +a ‘e q(k, —k,)VV - B. (3.24)

By virtue of (3.21) and (3.18), K satisfies the desired differential equation (3.2c), while (3.2d)
results from taking the divergence of (3.15), and using the previously established (3.2a) to
eliminate V2B.

The desired representation (3.1b) for P is found by substituting (3.24) into (3.6). In
order to find the desired representation (3.1a) for u, (3.24) is first substituted into (3.14) to

obtain

VxH, = B—V(r-B+B,)

(3.25)
—ky[K—12VV-K—a" (1 +ago)(1 — BV +a~ 'caalk, — k3)VV - B].

Then (3.25) and (3.13) are substituted into (3.5) and terms are rearranged, thereby obtaining
the representation (3.1a) for u.

1t has thus been shown that if {u, P, ¢} is a solution of (2.7a, b, c), then u and P have
the representation (3.1), and B, By, K, ¢ satisfy the equations (3.2).

The converse, that {u, P, ¢} is a solution of (2.7a, b, c) if the equations of (3.2) are
satisfied, is shown by straightforward substitution of (3.1) into the left hand sides of (2.7a.,
b, ¢), under the conditions (3.2).
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4. CONCENTRATED FORCE IN A REGION OF INFINITE EXTENT

1215

In a region V of infinite extent, let the body force be zero outside a finite region ¥,
which contains the origin and a non-vanishing field of unidirectional forces f, and let the

external electric field E° be zero everywhere. A concentrated force is defined by

F = lim '[ fpdV,.
Vv

Vo— 0

@.1)

In [6] it was shown that in an infinite region, solutions of equations of the types found in

{3.2) are

4”044]’ = f rflfQ dVQ,
14
4Anc 4By = —f ritr - fpdVy,
14
4nallK = —sz rite b, dV,,
v

dnll+asolyp = ko [ 7 (1=e" Vg B d,
Vv
where r' = /&2 +n? + (. Now

lim ry=r and lim ¥ =0
Vo0 Vo—0

Hence, for the concentrated force, {(4.2) reduces to
: F
47{C44B =y
r
(4.3) reduces to

and (4.4) reduces to

4nal?K = —k,r~* e "F.

(4.2)

@43

(4.4)

(@.5)

{4.6)

@.7)

(4.8)

If f is taken to be continuous across the boundary of V,, then the integrand of (4.5) is

transformed as follows:

4n(l +aeg)p = k, frl“’(l —e g 1, dS,
S

_kl J‘ VQ[I’; 1(1 _e_”/l‘)] . fQ dVQ
[ 4

The surface integral in (4.9) vanishes because f = 0 outside V,. Also,

Vo-0

lim f VQ[r,“‘(l—-e‘“/’l)].deVQ = —F-V[r '(1—e~""y].
1 4

4.9

(4.10)
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Hence,

an(l +aeg)p = k,F-V[r '(1—e "), @.11

Equations (4.6), (4.7), (4.8), and (4.11) constitute the solution of (2.7a, b, ¢) for the concen-
trated force.
Substitution of (4.11) into (2.3) yields

k F [r 3kr-F |r ir-F
4 EMS - 1 - N o —rfly .
T (1+aso)lf[r¢(l,) P lp(11)+ P ] (4.122)

as the Maxwell self-field, while substitution of (4.6), (4.7), (4.8), and (4.11) into (3.1) gives
the displacement and polarization as

1+kF 1—krr-F
2C44 r 2C44 1‘3

4mu =

12
" (Ti%ﬁ[gw(lr_l) - F‘p(f) ﬂﬂFeﬂﬂl] (4.12b)
Lo e ) ]
oo ]
(4.12¢)
~£°ki[—gw(i) +E —r/12+3" F (1) o Fe"/h],
agel; ro\lL I,
where
Y(x)=x*—x"le*—x2e ™ (4.13)
Now,
lim y(x) = 3

Therefore, |E¥S|, |u|, and |P| all behave as r ' asr — 0.

5. SOLUTION FOR THE SPHERICAL CAVITY

Let r be the length of the position vector r, and r, the radius of a spherical cavity in a
body of infinite extent. Then V is the region r > r., V' is the region r < r., and § is the closed
surface defined by r = r.. The solution of (2.7) and (2.8), bounded everywhere, vanishing
asr — oo, and for which ¢ is continuous at r = r,, is to be found for the case where f = 0

and E® = 0.
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Suitable solutions of (2.7) are given by the stress functions

By = Ayt (5.1a)
@ = Ar~te™ (5.1b)
B=K=0 r>r, (5.10)
@ = Ay e ™M r<r, (5.1d)

where A, and A4, are constants.
Equation (3.1) then gives the displacement and polarization as

u= —%(l—k)AIV(%) —kyeg A,V ey, (5.2a)
P = god,V(r~te ", r>r,. (5.2b)

With the insertion of {5.1b), (5.1d), and {(5.2), the boundary condition (2.8cjatr = r.is
satisfied identically, while (2.8a) and (2.8b) reduce to

(1=K A, +2(k, —ky)eg(p,+1)e” 4, =0 (5.3a)

—2(1 —k)kyeaady +{(1+aeo)ip? +4eolaly — (ky —ko)kacaal(pe +1)}e ™74 = ~bolip?,

{5.3b)

where
Pe = rc/ll’ (543)
= (b44c44—d§4)/ac44 >0, (5.4b)

in which the inequality is a consequence of positive-definiteness of the quadratic part of W.
The solution of (5.3) for 4, and A4, is

—2bggolky — k)l p2(p.+1)

Ay = , 5.5
b= TR + aso)lp? + oot 1] (.3)
—boly pd e*
Ay = , 5.5b
* = AT aso)p? + o2lpot ] (5:55)
where
(12 = 40801%/(1 +380)I%. (5.6)

The stress functions given by (5.1), with the constants 4, and A4, given by (5.5), are the
solution for the spherical cavity.

6. SOLUTION FOR THE SPHERE

Let r, be the radius of a solid sphere. Then Vis the regionr < r,, V'istheregionr > r,
and S is the closed surface defined by r = r,. The solution of (2.7) and (2.8), bounded every-
where, vanishing as r — oo, and in which ¢ is continuous at r = r, is to be found for the
case where f = 0 and E° = 0.



1218 JEREMY SCHWARTZ

Suitable solutions of (2.7) are given by the stress functions

B = A'r, (6.1a)
@ = Ar~ Usinh(r/l,)— Ayry Usinh(ry/l,), (6.1b)
By =0, K =0, r<t. (6.1¢c)
¢ =0, r>r, (6.1d)

where A and A are constants.
Equation (3.1) then gives the displacement and polarization as

U = kA\r—k, eoA5V[r~ " sinh(r/l, )], (6.2a)
P = ¢oA5V[r !sinh(r/1,)], r<r,. (6.2b)

With the insertion of (6.1b), (6.1d), and (6.2), the boundary condition (2.8¢c) at r = r, is
satisfied identically, while (2.8a) and (2.8b) reduce to

(3—4k)3p3 A +4ey(k, — k,)(ps cosh p,—sinh p)A) = 0, (6.3a)
(3ky —ak,k)caali pd A +{(1 4 ago)l p? sinh p,
—dgglall — (ky —ky)kyca4](ps cosh p,—sinh p) Ay = —bolip?, (6.3b)
where
ps = rgfly. (6.4)
The solution of (6.3) for A} and A5 is
4eobglky —k2)(ps cosh pg—sinh py)

Ay = .
! (3—4k)(1+ aso)lf [psz sinh p,— ﬂz(ps cosh p,—sinh Ps)]’ (6.5a)
- ‘bollpg
27 (1 +ago)[p? sinh p,— B*(p, cosh p,—sinh p,)]’ (6.5b)
where
B? = 4eo[(3—4k)ald +3(ky — k) caq)/(3— 4k} (1 + ago)l}. (6.6)

The stress functions given by (6.1), with the constants A’ and A, given by (6.5), are the
solution for the solid sphere.

7. SURFACE ENERGY OF DEFORMATION AND POLARIZATION

The surface energy for a spherical cavity is found by insertion of (5.2b), along with
(5.5b), into (2.11). Thus, for the cavity,

eobopdp.+1)
_ <0, 7.1
2(1+ago)y [p2 + oP(p. + 1)) D

while insertion of (6.2b), along with (6.5b), into (2.11) gives

T(p;) =

SOb(z)ps(ps cosh Ps— sinh ps)
2(1 +ago)l1[p? sinh p,— B*(p, cosh p,—sinh p,)]

T(ps) =
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as the surface energy of the sphere. In addition, the surface energy of a plane surface, found
in [1] for a centrosymmetric cubic crystal, becomes

_ Eobtz)
2(1 + agg)ly
in the present isotropic case. The inequalities of (7.1), (7.2), and (7.3) are the direct result of

the inequality in (2.10).
Now define

T, (7.3)

—pct==hjr,  p>0,
A=< 0, for a plane surface, (7.4)
ps ' =li/rg, ps >0.
Substitution of 1 for p, and p, permits (7.1), (7.2), and (7.3) to be compacted into

P

1-2
—2A(1=2) A<,
T() | TR ~
To_‘To {1 i=0, (7.5)
1 — A tanh(1/4)
T —Amah@a;

The present continuum theory is concerned only with macroscopic spheres and cavities.
At the same time, it is supposed here that I, is of the order of an intermolecular distance.
Therefore, interest lies only in the region

A< 1. (7.6)
Within this region (7.5) exhibits the behavior
1+ (@ - 1)A+0(4?), A-07,

T@ _ 1, A=0, (1.7)

Ty

1+(B2—1DA+0(4?), A1-0%.

This behavior depends on the restrictions placed on a® and 2 by the requirement that the
energy density W be positive-definite. These restrictions are given by

0<o <3, (7.8a)
0<p? <3, (7.8b)
B2 —a? = 12¢q(k; —k;)*caq/(3 —4k)(1+ago)l? > 0. (7.8¢)

Within these restrictions there are divers possibilities. Among these are the possibilities
that the surface energy may increase or decrease, from its value for the plane, for an internal
or an external spherical surface.
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The most notable exclusion is that the absolute value of the surface energy cannot
decrease for the internal and external spherical surfaces simultaneously. The surface energy
is negative, so the surface energy of the plane cannot be a minimum.

As for the magnitude of the effect of spherical curvature on the surface energy, it is
quite small, compared to the surface energy of the plane surface, as long as the radius of
curvature of the spherical surface is large in comparison with the material constant /,.
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AGctpakT—B pabote onpepensirorca yHkumd, aHanormudsie dynkuuaM IlankoBuua Kaaccmyeckon
YIPYrocTH, Ul AWHEHHOU Teopuu MUHIIHHEA YOPYTHX IMIeKTPUKOB. [TnoTHOCTD 9Heprun aedopmanum
M NONAPH3AINAA STHX AU3NEKTPHKOB 3aBUCAT OT TPaMEHTa NOJISPA3ALHHA, a TAKXe OT caMoll AedopManuu
M OOJApU3aMH. 3aTeM 3TH QYHKIHMH MCONIB3YIOTCA [UIS PELICHHs 3aavd KOHLEHTPHYECKOH cusbi. OHu
Taxke HCIOMB3YIOTCH AJIs pelieHus 3aaaqu chepH i chepueseckol MOIOCTH, IPH OTCYCTBHH BCEX BHEIIHHX
SABJICHHUH, C LEIBIO YKa3aHuA BIIMSHUA KPHBH3HBI IOBEPXHOCTH HAa NMOBEPXHOCTHYIO JHEPTHIO nedopMaiaun
¥ NOJAPH3ALMHA, B PAMKAX 3TOH TEOPHH.



